Suggested further readings
Contents
Suggested further readings¶
Overview¶
Bertsekas, D. P. (1995). Dynamic programming and optimal control. MA: Athena scientific.
Foundations¶
Bellman, R. (1966). Dynamic programming. Science 153(3731): 34-37. doi: 10.1126/science.153.3731.34 .
Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical population biology 9(2): 129-136.
Doyle, J. C. (1978). Guaranteed margins for LQG regulators. IEEE Transactions on automatic Control 23(4): 756-757. doi: 10.1109/TAC.1978.1101812 . Note: Abstract is definitely worth reading.
Kalman, R. E. (1960). Contributions to the theory of optimal control. Boletin de la sociedad matematica mexicana 5(2): 102-119.
Control as Inference¶
Kappen, H. J., Gómez, V., and Opper, M. (2012). Optimal control as a graphical model inference problem. Machine learning 87(2): 159-182. doi: 10.1007/s10994-012-5278-7 .
Todorov, E. (2009). Efficient computation of optimal actions. Proceedings of the national academy of sciences 106(28): 11478-11483. doi: 10.1073/pnas.0710743106 (postprint: europepmc.org/articles/pmc2705278 ).
Intro¶
Castro, L. N. G., Hadjiosif, A. M., Hemphill, M. A., and Smith, M. A. (2014). Environmental consistency determines the rate of motor adaptation. Current Biology 24(10): 1050-1061. doi: 10.1016/j.cub.2014.03.049 .
Smith, M. A., Brandt, J., and Shadmehr, R. (2000). Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403(6769): 544-549. doi: 10.1038/35000576 (postprint: www.seas.harvard.edu/motorlab/Reprints/nature00.pdf ).
Sing, G. C., Joiner, W. M., Nanayakkara, T., Brayanov, J. B., and Smith, M. A. (2009). Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron 64(4): 575-589. doi: 10.1016/j.neuron.2009.10.001 .
Wagner, M. J., and Smith, M. A. (2008). Shared internal models for feedforward and feedback control. Journal of Neuroscience 28(42): 10663-10673. doi: 10.1523/JNEUROSCI.5479-07.2008 .
Outro¶
Bautista, L. M., Tinbergen, J., and Kacelnik, A. (2001). To walk or to fly? How birds choose among foraging modes. Proceedings of the National Academy of Sciences, 98(3), 1089-1094. doi: 10.1073/pnas.98.3.1089 (postprint: ncbi.nlm.nih.gov/pmc/articles/PMC14713 ).
Ralston, H. J. (1958). Energy-speed relation and optimal speed during level walking. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie 17(4): 277-283. doi: 10.1007/BF00698754 .
Shadmehr, R., and Ahmed, A. A. (2020). Vigor: Neuroeconomics of movement control. MIT Press.
Xu-Wilson, M., Zee, D. S., and Shadmehr, R. (2009). The intrinsic value of visual information affects saccade velocities. Experimental Brain Research, 196(4), 475-481. doi: 10.1007/s00221-009-1879-1 (postprint: europepmc.org/articles/pmc2771693 ).
Yoon, T., Geary, R. B., Ahmed, A. A., & Shadmehr, R. (2018). Control of movement vigor and decision making during foraging. Proceedings of the National Academy of Sciences 115(44): E10476-E10485. doi: 10.1073/pnas.1812979115 (postprint: europepmc.org/articles/pmc6217431 ).
Yoon, T., Jaleel, A., Ahmed, A. A., and Shadmehr, R. (2020). Saccade vigor and the subjective economic value of visual stimuli. Journal of neurophysiology 123(6): 2161-2172. doi: 10.1152/jn.00700.2019 .