Tutorial 5: Internal Climate Variability
Contents
Tutorial 5: Internal Climate Variability#
Week 2, Day 1, Future Climate: The Physical Basis
Content creators: Brodie Pearson, Julius Busecke, Tom Nicholas
Content reviewers: Younkap Nina Duplex, Zahra Khodakaramimaghsoud, Sloane Garelick, Peter Ohue, Jenna Pearson, Derick Temfack, Peizhen Yang, Cheng Zhang, Chi Zhang, Ohad Zivan
Content editors: Jenna Pearson, Ohad Zivan, Chi Zhang
Production editors: Wesley Banfield, Jenna Pearson, Chi Zhang, Ohad Zivan
Our 2023 Sponsors: NASA TOPS, Google DeepMind, and CMIP
Tutorial Objectives#
In this tutorial, we will learn about the concept of internal climate variability, how it influences the predictability of climate phenomena and how it contributes to uncertainty in CMIP6 models. We will work with a single-model ensemble, which utilizes the MPI-ESM1-2-LR model from CMIP6, to isolate and quantify internal climate variability.
By the end of this tutorial, you would be able to:
Understand the importance of internal climate variability and its role in climate prediction and model uncertainty.
Create and evaluate a single-model ensemble using IPCC uncertainty bands, providing a visual representation of model uncertainty.
Contrast the uncertainty due to internal variability against the uncertainty within a multi-model ensemble (which includes internal variability and the impacts of human/coding choices).
Setup#
# installations ( uncomment and run this cell ONLY when using google colab or kaggle )
# !pip install condacolab &> /dev/null
# import condacolab
# condacolab.install()
# # Install all packages in one call (+ use mamba instead of conda), this must in one line or code will fail
# !mamba install xarray-datatree intake-esm gcsfs xmip aiohttp nc-time-axis cf_xarray xarrayutils &> /dev/null
# imports
import time
tic = time.time()
import intake
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
from xmip.preprocessing import combined_preprocessing
from xarrayutils.plotting import shaded_line_plot
from datatree import DataTree
from xmip.postprocessing import _parse_metric
# @title Figure settings
import ipywidgets as widgets # interactive display
plt.style.use(
"https://raw.githubusercontent.com/ClimateMatchAcademy/course-content/main/cma.mplstyle"
)
%matplotlib inline
# @title Helper functions
def global_mean(ds: xr.Dataset) -> xr.Dataset:
"""Global average, weighted by the cell area"""
return ds.weighted(ds.areacello.fillna(0)).mean(["x", "y"], keep_attrs=True)
# Calculate anomaly to reference period
def datatree_anomaly(dt):
dt_out = DataTree()
for model, subtree in dt.items():
# for the coding exercise, ellipses will go after sel on the following line
ref = dt[model]["historical"].ds.sel(time=slice("1950", "1980")).mean()
dt_out[model] = subtree - ref
return dt_out
def plot_historical_ssp126_combined(dt):
for model in dt.keys():
datasets = []
for experiment in ["historical", "ssp126"]:
datasets.append(dt[model][experiment].ds.tos)
da_combined = xr.concat(datasets, dim="time")
# @title Video 1: Internal Climate Variability
from ipywidgets import widgets
from IPython.display import YouTubeVideo
from IPython.display import IFrame
from IPython.display import display
class PlayVideo(IFrame):
def __init__(self, id, source, page=1, width=400, height=300, **kwargs):
self.id = id
if source == "Bilibili":
src = f"https://player.bilibili.com/player.html?bvid={id}&page={page}"
elif source == "Osf":
src = f"https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render"
super(PlayVideo, self).__init__(src, width, height, **kwargs)
def display_videos(video_ids, W=400, H=300, fs=1):
tab_contents = []
for i, video_id in enumerate(video_ids):
out = widgets.Output()
with out:
if video_ids[i][0] == "Youtube":
video = YouTubeVideo(
id=video_ids[i][1], width=W, height=H, fs=fs, rel=0
)
print(f"Video available at https://youtube.com/watch?v={video.id}")
else:
video = PlayVideo(
id=video_ids[i][1],
source=video_ids[i][0],
width=W,
height=H,
fs=fs,
autoplay=False,
)
if video_ids[i][0] == "Bilibili":
print(
f"Video available at https://www.bilibili.com/video/{video.id}"
)
elif video_ids[i][0] == "Osf":
print(f"Video available at https://osf.io/{video.id}")
display(video)
tab_contents.append(out)
return tab_contents
video_ids = [("Youtube", "YcIAaljLRh4"), ("Bilibili", "BV1HF41197qn")]
tab_contents = display_videos(video_ids, W=730, H=410)
tabs = widgets.Tab()
tabs.children = tab_contents
for i in range(len(tab_contents)):
tabs.set_title(i, video_ids[i][0])
display(tabs)
Section 1: Internal Climate Variability & Single-model Ensembles#
One of the CMIP6 models we are using in today’s tutorials, MPI-ESM1-2-LR, is part of single-model ensemble, where its modelling centre carried out multiple simulations of the model for many of the CMIP6 experiments. To create a single-model ensemble, the modelling centre will run a model using the same forcing data, but with small changes in the initial conditions. Due to the chaotic nature of the climate system, these small changes in initial conditions lead to differences in the modelled climate as time progresses. These differences are often referred to as internal variability. By running this single-model ensemble and comparing the results to simulations using different forcing datasets, it allows us to separate the internal variability from the externally-forced variability. If you are interested in learning more about large ensemble climate models, you can read this paper.
Let’s take advantage of this single-model ensemble to quantify the internal variability of this model’s simulated climate, and contrast this against the multi-model uncertainty we diagnosed in the previous tutorial.
Coding Exercise 1.1#
Complete the following code to:
Load 5 different realizations of the MPI-ESM1-2-LR experiments (r1i1p1f1 through r5i1p1f1). This numbering convention means they were each initialized using a different time-snapshot of the base/spin-up simulation.
Plot the historical and SSP1-2.6 experiment data for each realization, using a distinct color for each realization, but keeping that color the same across both the historical period and future period for a given realization.
col = intake.open_esm_datastore(
"https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
) # open an intake catalog containing the Pangeo CMIP cloud data
cat_ensemble = col.search(
source_id="MPI-ESM1-2-LR",
variable_id="tos",
table_id="Omon",
# select the 5 ensemble members described above
member_id=...,
grid_label="gn",
experiment_id=["historical", "ssp126", "ssp585"],
require_all_on=["source_id", "member_id"],
)
# convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
kwargs = dict(
preprocess=combined_preprocessing, # apply xMIP fixes to each dataset
xarray_open_kwargs=dict(
use_cftime=True
), # ensure all datasets use the same time index
storage_options={
"token": "anon"
}, # anonymous/public authentication to google cloud storage
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_ensemble.esmcat.aggregation_control.groupby_attrs = [
"source_id", "experiment_id"]
dt_ensemble = cat_ensemble.to_datatree(**kwargs)
# add the area (we can reuse the area from before, since for a given model the horizontal are does not vary between members)
dt_ensemble_with_area = DataTree()
for model, subtree in dt_ensemble.items():
metric = dt_area["MPI-ESM1-2-LR"]["historical"].ds["areacello"].squeeze()
dt_ensemble_with_area[model] = subtree.map_over_subtree(
_parse_metric, metric)
# global average
# average every dataset in the tree globally
dt_ensemble_gm = dt_ensemble_with_area.map_over_subtree(global_mean)
# calculate anomaly
dt_ensemble_gm_anomaly = datatree_anomaly(dt_ensemble_gm)
def plot_historical_ssp126_ensemble_combined(dt, ax):
for model in dt.keys():
datasets = []
for experiment in ["historical", "ssp126"]:
datasets.append(
dt[model][experiment].ds.coarsen(time=12).mean().tos)
# concatenate the historical and ssp126 timeseries for each ensemble member
da_combined = ...
# plot annual averages
da_combined.plot(hue="member_id", ax=ax)
fig, ax = plt.subplots()
plot_historical_ssp126_ensemble_combined(dt_ensemble_gm_anomaly, ax)
ax.set_title(
"Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble"
)
ax.set_ylabel("Global Mean SST Anomaly [$^\circ$C]")
ax.set_xlabel("Year")
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In[7], line 1
----> 1 col = intake.open_esm_datastore(
2 "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
3 ) # open an intake catalog containing the Pangeo CMIP cloud data
5 cat_ensemble = col.search(
6 source_id="MPI-ESM1-2-LR",
7 variable_id="tos",
(...)
13 require_all_on=["source_id", "member_id"],
14 )
16 # convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/core.py:107, in esm_datastore.__init__(self, obj, progressbar, sep, registry, read_csv_kwargs, columns_with_iterables, storage_options, **intake_kwargs)
105 self.esmcat = ESMCatalogModel.from_dict(obj)
106 else:
--> 107 self.esmcat = ESMCatalogModel.load(
108 obj, storage_options=self.storage_options, read_csv_kwargs=read_csv_kwargs
109 )
111 self.derivedcat = registry or default_registry
112 self._entries = {}
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/cat.py:264, in ESMCatalogModel.load(cls, json_file, storage_options, read_csv_kwargs)
262 csv_path = f'{os.path.dirname(_mapper.root)}/{cat.catalog_file}'
263 cat.catalog_file = csv_path
--> 264 df = pd.read_csv(
265 cat.catalog_file,
266 storage_options=storage_options,
267 **read_csv_kwargs,
268 )
269 else:
270 df = pd.DataFrame(cat.catalog_dict)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:912, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
899 kwds_defaults = _refine_defaults_read(
900 dialect,
901 delimiter,
(...)
908 dtype_backend=dtype_backend,
909 )
910 kwds.update(kwds_defaults)
--> 912 return _read(filepath_or_buffer, kwds)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:577, in _read(filepath_or_buffer, kwds)
574 _validate_names(kwds.get("names", None))
576 # Create the parser.
--> 577 parser = TextFileReader(filepath_or_buffer, **kwds)
579 if chunksize or iterator:
580 return parser
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1407, in TextFileReader.__init__(self, f, engine, **kwds)
1404 self.options["has_index_names"] = kwds["has_index_names"]
1406 self.handles: IOHandles | None = None
-> 1407 self._engine = self._make_engine(f, self.engine)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1661, in TextFileReader._make_engine(self, f, engine)
1659 if "b" not in mode:
1660 mode += "b"
-> 1661 self.handles = get_handle(
1662 f,
1663 mode,
1664 encoding=self.options.get("encoding", None),
1665 compression=self.options.get("compression", None),
1666 memory_map=self.options.get("memory_map", False),
1667 is_text=is_text,
1668 errors=self.options.get("encoding_errors", "strict"),
1669 storage_options=self.options.get("storage_options", None),
1670 )
1671 assert self.handles is not None
1672 f = self.handles.handle
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:716, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
713 codecs.lookup_error(errors)
715 # open URLs
--> 716 ioargs = _get_filepath_or_buffer(
717 path_or_buf,
718 encoding=encoding,
719 compression=compression,
720 mode=mode,
721 storage_options=storage_options,
722 )
724 handle = ioargs.filepath_or_buffer
725 handles: list[BaseBuffer]
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:373, in _get_filepath_or_buffer(filepath_or_buffer, encoding, compression, mode, storage_options)
370 if content_encoding == "gzip":
371 # Override compression based on Content-Encoding header
372 compression = {"method": "gzip"}
--> 373 reader = BytesIO(req.read())
374 return IOArgs(
375 filepath_or_buffer=reader,
376 encoding=encoding,
(...)
379 mode=fsspec_mode,
380 )
382 if is_fsspec_url(filepath_or_buffer):
File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:482, in HTTPResponse.read(self, amt)
480 else:
481 try:
--> 482 s = self._safe_read(self.length)
483 except IncompleteRead:
484 self._close_conn()
File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:631, in HTTPResponse._safe_read(self, amt)
624 def _safe_read(self, amt):
625 """Read the number of bytes requested.
626
627 This function should be used when <amt> bytes "should" be present for
628 reading. If the bytes are truly not available (due to EOF), then the
629 IncompleteRead exception can be used to detect the problem.
630 """
--> 631 data = self.fp.read(amt)
632 if len(data) < amt:
633 raise IncompleteRead(data, amt-len(data))
File ~/miniconda3/envs/climatematch/lib/python3.10/socket.py:705, in SocketIO.readinto(self, b)
703 while True:
704 try:
--> 705 return self._sock.recv_into(b)
706 except timeout:
707 self._timeout_occurred = True
File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1274, in SSLSocket.recv_into(self, buffer, nbytes, flags)
1270 if flags != 0:
1271 raise ValueError(
1272 "non-zero flags not allowed in calls to recv_into() on %s" %
1273 self.__class__)
-> 1274 return self.read(nbytes, buffer)
1275 else:
1276 return super().recv_into(buffer, nbytes, flags)
File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1130, in SSLSocket.read(self, len, buffer)
1128 try:
1129 if buffer is not None:
-> 1130 return self._sslobj.read(len, buffer)
1131 else:
1132 return self._sslobj.read(len)
KeyboardInterrupt:
Coding Exercise 1.2#
Complete the following code to:
Repeat the final figure of the last tutorial, except now display means and uncertainty bands of the single-model ensemble that you just loaded, rather than the multi-model ensemble analyzed in the previous tutorial.
fig, ax = plt.subplots()
for experiment, color in zip(["historical", "ssp126", "ssp585"], ["C0", "C1", "C2"]):
da = (
dt_ensemble_gm_anomaly["MPI-ESM1-2-LR"][experiment]
.ds.tos.coarsen(time=12)
.mean()
.load()
)
# calculate the mean across ensemble members
da.mean(...).plot(color=color, label=experiment, ax=ax)
# shading representing spread between members
x = da.time.data
# diagnose the lower range of the likely bounds
da_lower = ...
# diagnose the upper range of the likely bounds
da_upper = ...
ax.fill_between(x, da_lower, da_upper, alpha=0.5, color=color)
ax.set_title(
"Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble"
)
ax.set_ylabel("Global Mean SST Anomaly [$^\circ$C]")
ax.set_xlabel("Year")
ax.legend()
Question 1.2: Climate Connection#
How does this figure compare to the multi-model ensemble figure from the previous tutorial (included below)? Can you interpret differences using the science we have discussed today?
Summary#
In this tutorial, we explored the internal climate variability and its implications for climate modeling and prediction. We discussed the utility of single-model ensembles for isolating the effects of internal variability by contrasting simulations with identical physics, numerics, and discretization. We quantified the internal variability of MPI-ESM1-2-LR model’s simulated climate and compared it to the uncertainty introduced by multi-model ensembles. Through this tutorial, we better understand the boundaries of climate prediction and the different sources of uncertainty in CMIP6 models.
Resources#
This tutorial uses data from the simulations conducted as part of the CMIP6 multi-model ensemble.
For examples on how to access and analyze data, please visit the Pangeo Cloud CMIP6 Gallery
For more information on what CMIP is and how to access the data, please see this page.
For more information about large ensemble climate modelling see this paper.